Binomial number

Results: 198



#Item
121Modular arithmetic / Arithmetic function / Prime-counting function / Exponentiation / Fibonacci number / Binomial coefficient / Proof that π is irrational / Mathematics / Number theory / Prime numbers

Proceedings of the Edinburgh Mathematical Society[removed], 271–289 DOI:[removed]S0013091510001355 ON NUMBERS n DIVIDING THE nTH TERM OF A LINEAR RECURRENCE 1

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2012-05-10 10:36:06
122Summation / Combinatorics / Integer sequences / Number theory / Permutation / Normal distribution / Mathematics / Arithmetic / Mathematical notation

3 Higher Calculus of Binomial Identity The simplest one of Binomial Identity is given as follows. n (1+ x)n = ΣnC s x s

Add to Reading List

Source URL: fractional-calculus.com

Language: English - Date: 2013-11-11 23:38:48
123Combinatorics / Central limit theorem / De Moivre–Laplace theorem / Mathematical series / Number theory / Binomial coefficient / Taylor series / Factorial / Binomial distribution / Mathematics / Mathematical analysis / Integer sequences

The normal approximation to the hypergeometric distribution Mark A. Pinsky, Northwestern University 1 Introduction

Add to Reading List

Source URL: www.dartmouth.edu

Language: English - Date: 2003-11-11 13:38:55
124Number theory / Enumerative combinatorics / Permutations / Generating function / Binomial coefficient / Derangement / Factorial / Inclusion–exclusion principle / Cycle index / Mathematics / Combinatorics / Integer sequences

Notes on counting Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS

Add to Reading List

Source URL: www.maths.qmul.ac.uk

Language: English - Date: 2003-04-10 07:05:42
125Binomial coefficient / Eulerian number / Summation / Sigma-algebra / Permutation / Mathematics / Combinatorics / Integer sequences

07 New Formula for the Sum of Powers 7.1 Expression with binomial coefficients of a factorial Formula[removed]S. Ruiz ) When n

Add to Reading List

Source URL: fractional-calculus.com

Language: English - Date: 2013-11-11 23:38:56
126Modular arithmetic / Algebraic number theory / Quadratic residue / Ring / Ring theory / Binomial coefficient / Euclidean algorithm / Mathematics / Abstract algebra / Number theory

PDF Document

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2005-03-07 11:45:57
127Combinatorics / Modular arithmetic / Bernoulli number / Topology / Bernoulli polynomials / Binomial coefficient / P-adic number / Summation / Factorial / Mathematics / Number theory / Integer sequences

Bernoulli numbers and generalized factorial sums Paul Thomas Young Department of Mathematics, College of Charleston Charleston, SC[removed]removed]

Add to Reading List

Source URL: youngp.people.cofc.edu

Language: English - Date: 2010-06-25 15:31:33
128Arithmetic / Least common multiple / Mathematical proof / Pi / Pythagorean triple / Binomial coefficient / Mathematics / Elementary arithmetic / Number theory

2011 U OF I FRESHMAN MATH CONTEST 1. Let x = 0.[removed][removed]be the number whose decimal expansion consists of the sequence of natural numbers written next to each other. (a) Determine the 2011th digit after th

Add to Reading List

Source URL: www.math.illinois.edu

Language: English - Date: 2011-10-02 10:35:20
129Algebraic number theory / Integer sequences / Elementary number theory / Integer / Ring theory / Number / Square-free integer / Binomial coefficient / Mathematics / Abstract algebra / Number theory

U OF I MOCK PUTNAM EXAM SEPT. 29, [removed]Suppose P (x) is a polynomial with integer coefficients such that none of the values P (1), . . . , P[removed]is divisible by[removed]Prove that P (n) 6= 0 for all integers n. 2. Fi

Add to Reading List

Source URL: www.math.illinois.edu

Language: English - Date: 2009-09-30 19:05:13
130Fibonacci number / Summation / Mathematical induction / Factorial / Recurrence relation / Generating function / Binomial coefficient / Formal power series / Mathematics / Combinatorics / Integer sequences

UIUC Mock Putnam Exam[removed]Solutions Problem 1. Let a1 = 1, a2 = 1, a3 = −1, and for n > 3 define an by an = an−1 an−3 . Find a2006 . Solution. Computing the first 10 terms of the sequence {an }, we obtain

Add to Reading List

Source URL: www.math.illinois.edu

Language: English - Date: 2006-10-08 16:27:20
UPDATE